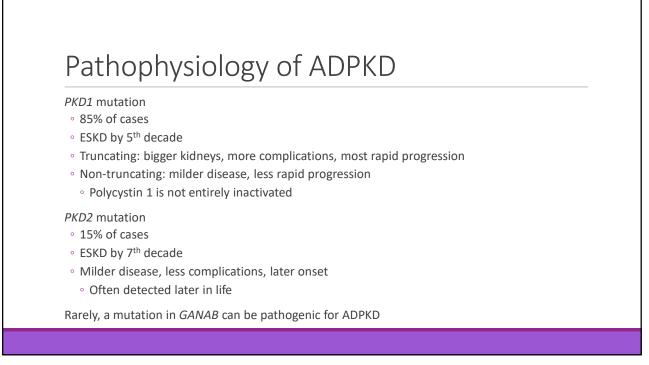
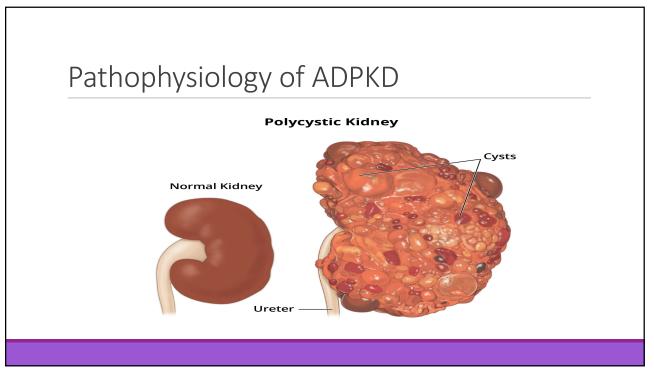
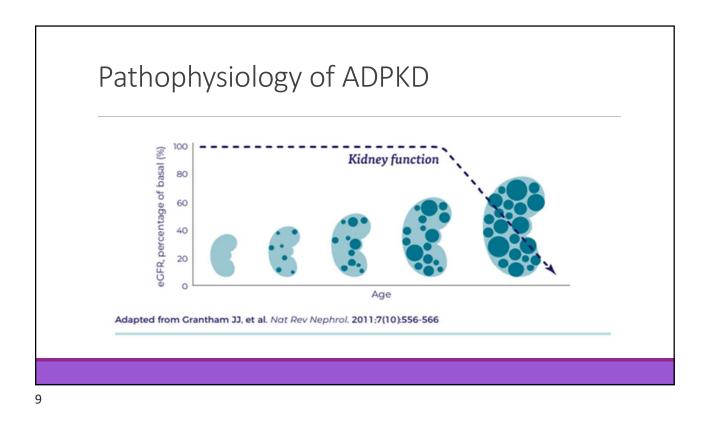
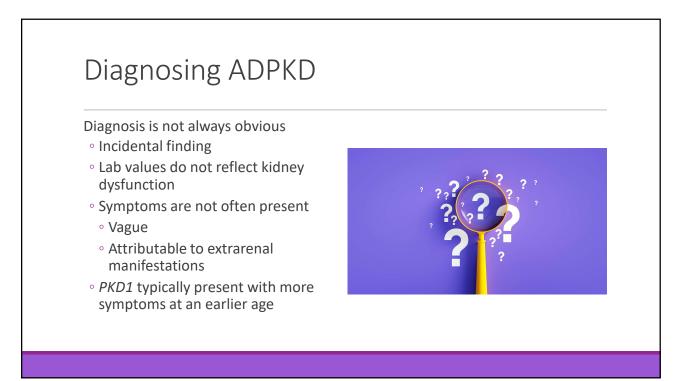

The ABCs of ADPKD: Management of Polycystic Kidney Disease in Primary Care


ELYSSA NOCE, MSN, APRN, AGPCNP-C, CDN, CDCES SECTION OF NEPHROLOGY, YALE-NEW HAVEN HOSPITAL

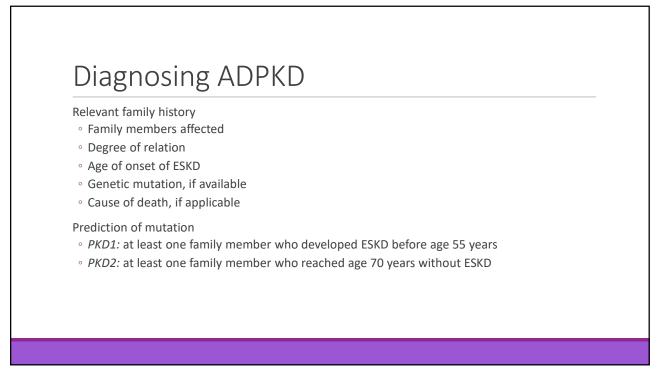

Pathophysiology of ADPKD


Epithelial-lined, fluid-filled cysts grow in or on the kidney


- ° Results in obstructive nephropathy
- ° Slow, gradual, and massive bilateral kidney enlargement
- Kidneys can become up to 20x normal size

Labs may not show that kidneys are getting bigger

- $^{\circ}$ Require imaging for diagnosis
- $^{\circ}$ Kidney size is a predictor of disease progression
- Patients with bigger kidneys are more likely to experience more rapid loss of kidney function than patients with smaller kidneys



Diagnosing ADPKD

Clinical presentation

- Hypertension
- Hematuria
- Urinary tract infection
- Proteinuria
- Back or flank pain
- Kidney stones
- Headaches

Most commonly diagnosed in asymptomatic patients with a positive family history, in an evaluation for secondary hypertension, or as an incidental finding for another concern

Diagnosing ADPKD

With family history

- Asymptomatic
 - Baseline ultrasound
 - +/- genetic testing
 - $\,\circ\,$ If positive, baseline CT or MRI
- Typical findings
 - Baseline CT or MRI

Without family history

- No established imaging-based criteria for diagnosis
- Baseline ultrasound
- Genetic testing

13

Diagnosing ADPKD

WITH FAMILY HISTORY

US Criteria for Diagnosis		
Age	# Cysts	
15-29	>/= 3 cysts unilaterally	
30-39	or bilaterally	
40-59	>/= 2 cysts in each kidney	
>/= 60	>/= 4 cysts in each kidney	

WITHOUT FAMILY HISTORY

>/= 10 cysts each kidney Simple cysts increase with age			
Age	% with Unilateral Cysts	% with Bilateral Cysts	
15-29	0	0	
30-49	1.7	1	
50-69	11.5	4	
>/= 70	22.1	9	

Clinical Case Scenario: Amelia

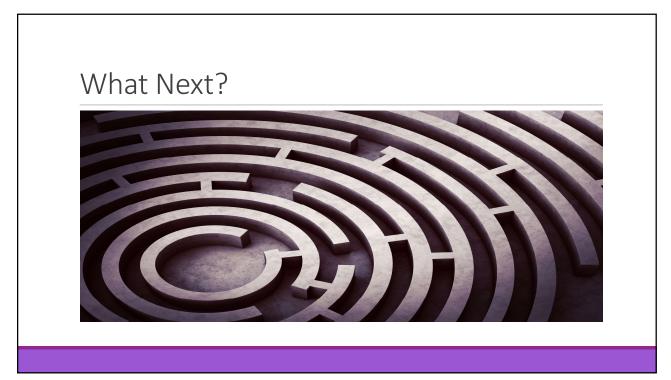
31-year-old AFAB (she/her) with an unremarkable medical history presents to the clinic for blood in her urine for the past three days after a ski trip, she reports multiple falls but did not sustain any injuries

She is not on any medications

 $\,\circ\,$ IUD in place

She has a family history of ADPKD

- Father: ESKD at age 49
- $^\circ~$ Pat. grandmother: ESKD in her 50s


Evaluation

• Exam

- Well-appearing, no distress
- No CVA tenderness
- No palpable cysts on kidneys
- BP 148/94, P 68
- Wt 139 lb (63 kg), Ht 5'5" (1.68 m)

• Labs

- Creatinine 1.1 mg/dL
- eGFR 69 ml/min
- Urinalysis, + blood and + protein
- Imaging
- Renal US: diffuse bilateral cysts

Next Steps

Hypertension management Role of genetic testing Determining risk of progression Specialty referral Treatment with tolvaptan

Hypertension Management

Treatment options

- Nonpharmacological interventions
- NutritionACEI or ARB
- Subsequent therapies
- Avoidance of diuretics
- Target BP
- < 130/80 vs < 110/75
 </pre>

19

Role of Genetic Testing

Critical aspect of patient counseling

Not widely used in the US

Considerations for testing:

- Understanding of genetic testing
- Consequences of results
- Comfort discussing results
- Access to professional genetic counselors

Draws attention to the need for increased education for providers in genetic testing and analysis of results

Clinical Case Scenario

Amelia had genetic testing done and underwent counseling with a trained genetic counselor

Found to have a truncating PKD1 mutation

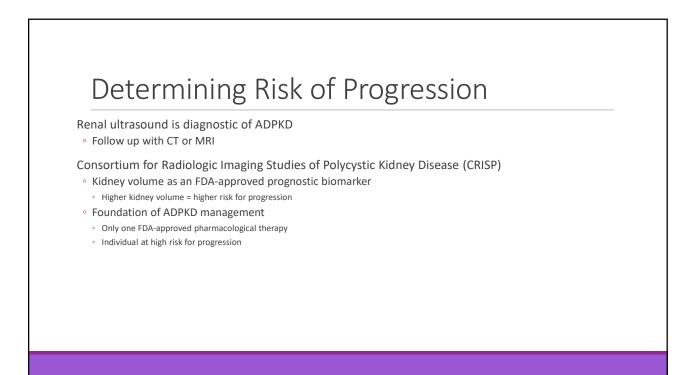
Use this information to determine her risk of progression using the PROPKD score

PROPKD Scoring System			
1 point		Male gender	
2 points	HTN before age 35		
2 points	Urolog	ical event before	age 35
0 points	PKD2 mutation		
2 points	Non-truncating PKD1 mutation		
4 points	Truncating PKD1 mutation		
Risk of Progression to ESKD	0-3 Low Risk	4-6 Intermediate Risk	7-9 High Risk

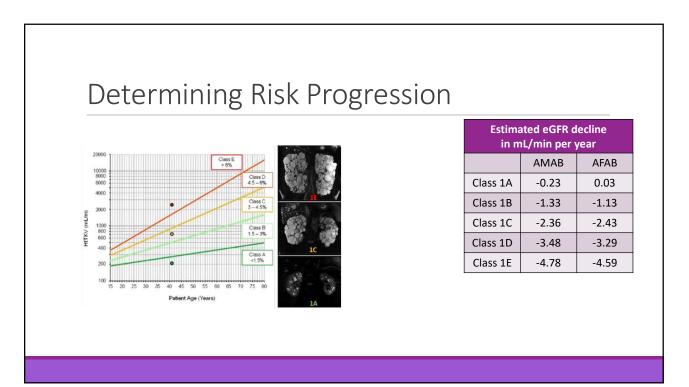
21

Clinical Case Scenario

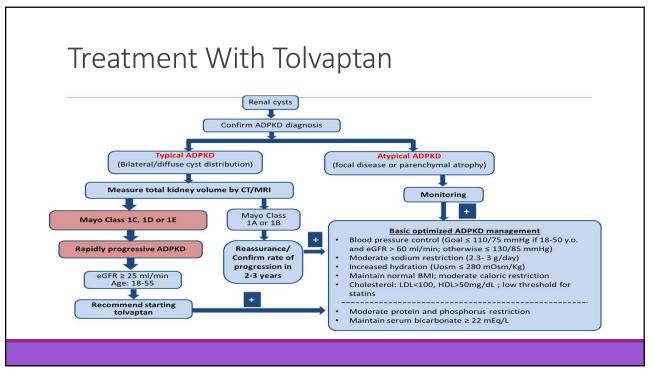
Amelia's PROPKD Score = 8 points			
1 point	Male gender		
2 points	HTN before age 35		
2 points	Urological event before age 35		
0 points	PKD2 mutation		
2 points	Non-truncating PKD1 mutation		
4 points	Truncating PKD1 mutation		
Risk of Progression to ESKD	0-3 Low Risk	4-6 Intermediate Risk	7-9 High Risk


Determining Risk of Progression

Critical aspect of managing ADPKD


 $\,\circ\,$ This needs to start in the primary care setting for patients to have the best outcomes possible!

Characteristics associated with more rapid disease progression


- Genetic factors
- Kidney size
- Hypertension
- Early onset of symptoms
- $^\circ~$ Male gender
- Proteinuria

Determinin	g Risk of Progression
Sagittal Length	Coronal Length
1 Kidney Volu	ime Calculator based on Ellipsoid equation (π/δxLxWxD) from MRI or CT image
Right Kidney	Required Data Entry Left Kidney
Sagittal Length (mm)	Sagittal Length (mm)
Coronal Length (mm)	Coronal Length (mm)
Width (mm) Depth (mm)	Width (mm) Depth (mm)
Right Kidney Volume (mL)	Calculated Results Left Kidney Volume (mL)
August Addrey Volume (mL)	
Clear All	Total Kidney Volume (mL) Calculate Volumes
	Calculate Volumes

<section-header><section-header><section-header><section-header><list-item><list-item><section-header><section-header><section-header>

Treatment with Tolvaptan

Hepatotoxicity

 $^\circ~$ 4.9% of patients experienced mild liver injury

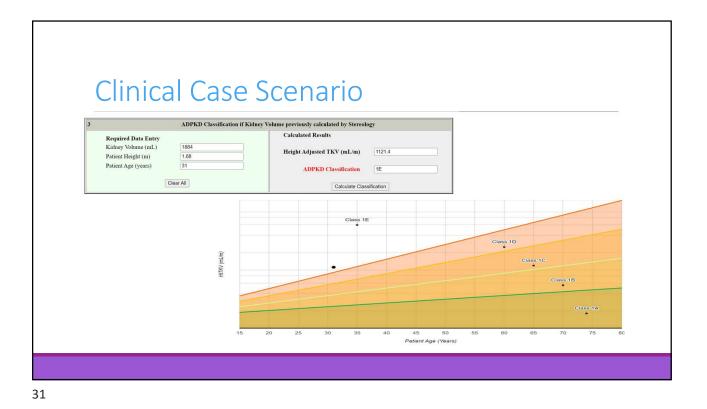
 $\,\circ\,$ 0.2% of patients experienced serious liver injury

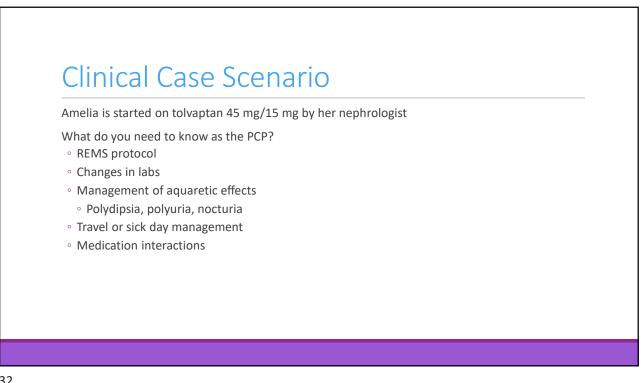
Can only be prescribed by certified prescribers

Can only be dispensed by certified pharmacies

Patient status forms required regularly to monitor safety of therapy

29


Clinical Case Scenario


You order a follow up MRI to determine TKV and the radiologist provides the dimensions for you to enter in the Mayo calculator

- TKV=1884 ml
- htTKV=112.4 ml/m
- $\,\circ\,$ You use the second stage of the calculator to determine her classification

Is Amelia at high risk for disease progression?

Does she qualify for treatment with tolvaptan?

Specialty Referral

Management of ADPKD may require a full team and each member plays an important role

...and so many more!

- Primary care
- Nephrology
 - $^\circ$ $\,$ Consider PKD Foundation Centers of Excellence or Partners in Care
- Hepatology
- Radiology
- Urology
- Mental health specialists
- Neurosurgeons
- Transplant team
- Genetic counselors
- Dietitians

33

Acute and Chronic Management Issues

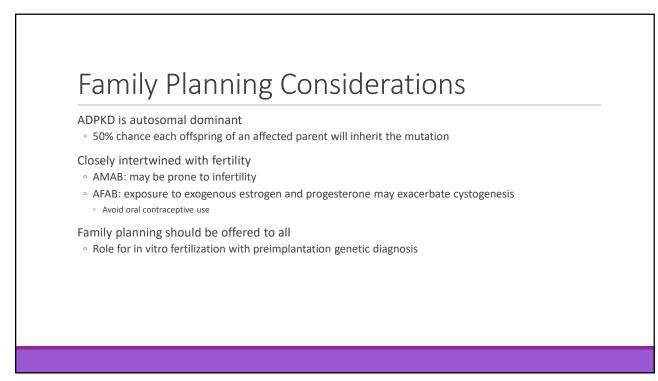
Planning for progression of CKD

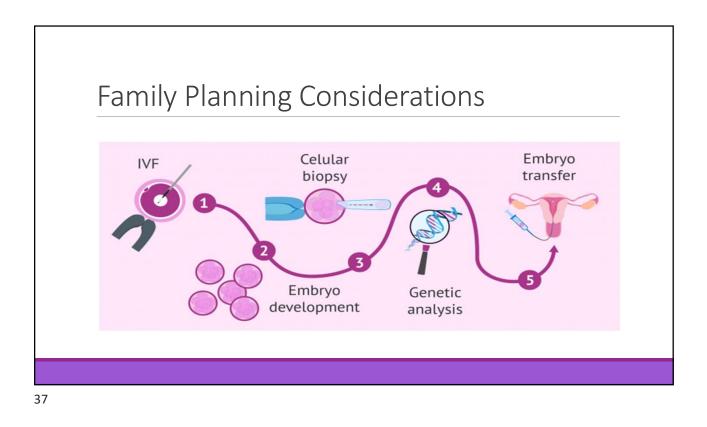
Family planning considerations

Evaluation of acute and chronic pain

Planning for Progression of CKD

ADPKD is progressive and irreversible


Cystogenesis will result in eventual chronic kidney disease (CKD)


Need to follow normal sequelae of CKD

- $\,\circ\,$ Anemia, acidosis, mineral-bone disease, hypertension
- Cardiovascular disease

Planning for eventual ESKD

- Transplant referral
- Dialysis planning
- Palliative care

Evaluation of Pain ACUTE PAIN CHRONIC PAIN Cyst hemorrhage Daily episodes for more than 4-6 weeks • Often starts as acute episode • Sudden onset of sharp, localized pain • Gross hematuria +/- clots Anterior abdomen > back UTI/pyelonephritis May not correlate with largest cysts Nephrolithiasis • Consider role for cyst aspiration 20% incidence in ADPKD Early satiety Headaches • Consider cerebral aneurysm

Conclusion

ADPKD is a rare condition that is often an incidental diagnosis in the primary care setting

You can play a pivotal role in ensuring optimal care for ADPKD in primary care

- Diagnosis
- $^{\circ}~$ Determine risk of rapid progression
- $\,\circ\,$ Consider use of genetic testing
- Hypertension management and routine CKD care

39

References

Bae, K., Park, B., Sun, H., Wang, J., Tao, C., Chapman, A.B., Torres, V.E., Grantham, J.J., Mrug, M., bennett, W.M., Flessner, M.F., Landsittel, D.P., & Bae, K.T. (2013). Segmentation of individual renal cysts from MR images in patients with autosomal dominant polycystic kidney disease. *Clinical Journal of the American Society of Nephrology, 8*(7), 1089-1097.

Chebib, F.T., Perrone, R.D., Chapman, A.B., Dahl, N.K., Harris, P.C., Mrug, M, Mustafa, R.A., Rastogi, A., Watnick, T., Yu, A.S., & Torres, V.E. (2018). A practical guide for treatment of rapidly progressive ADPKD with tolvaptan. *Journal of the American Society of Nephrology, 29*(10), 2458-2470.

Hagan, M.C. & Norby, S.M. (2010). Evaluation and management of pain in autosomal dominant polycystic kidney disease. *Advances in Chronic Kidney Disease*, *17*(3), e1-e16.

References

Irazabal, M.V., Rangel, L.J., Bergstrath, E.J., Osborn, S.L., Harmon, A.J., Sundsbak, J.L., Bae, K.T., Chapman, A.B., Grantham, JJ., Mrug, M., Hogan, M.C., El-Zoghby, Z.M., Harris, P.C., Erickson, B.J, King, B.F., Torres, V.E. (2015). Imaging classification of autosomal dominant polycystic kidney disease: a simple model for selecting patients for clinical trials. *Journal of the American Society of Nephrology, 26*(1), 160-172.

Pei, Y. & Watnick, T. (2009). Diagnosis and screening of autosomal dominant polycystic kidney disease. *Advances in Chronic Kidney Disease*, *17*(2), 140-152.

Smith, K.A., Thompson, A.M., Baron, D.A., Broadbent, S.T., Lundstrom, G.H., & Perrone, R.D. (2018). Addressing the need for clinical trial end points in autosomal dominant polycystic kidney disease: a report from the Polycystic Kidney Disease Outcomes Consortium. *American Journal of Kidney Disease*, *73*(4), 533-541.